Graph SLAM

Limitations of EKF-SLAM

- Time complexity O(n2)
- Memory complexity O(n2)

So this becomes difficult for EKF SLAM:

Large City Navigation Scenario (3.3 kilometers) from the DARPA ASPN project

Graph SLAM Representation

• Let's say that we have a robot moving through space

- Each of the **states** can be represented as a variable node in a graph.
- The **action** can be represented as the a constraint denoted by an edge.

Factor Graph Representation

- Each of the **landmarks** can be represented as a node in a graph.
- The **measurement** can be represented as the a constraint denoted by an edge.

Factor Graph Intuition

- Think of each of the constraints as springs
- The stiffness of the string will be the uncertainty.

Victoria park dataset

- iSAM paper which uses factor graphs solves the complete problem including data association problem in 7.7 mins, the sequence is 26 min long
- 3.3 times faster than real-time on a laptop computer

Nebot Et Al

Toy Problem: Bayesian network

State: Robot location - x_1 , x_2 , x_3 , l_1 , l_2 Measurement: z_1 , z_2 , z_3 , z_4

SLAM is basically figuring out the state given the measurements

So what we want is:

$$p(X|Z)$$
$$p(X|Z) = \frac{p(X,Z)}{P(Z)}$$

To get that we want:

Toy problem: Introducing dynamics

 x_1, x_2 is the state of the robot There are no observation

$$p(X, Z) = p(x_1, x_2) = p(x_2|x_1)p(x_1)$$

Toy problem: Introducing Measurement

 x_1 is the state of the robot

 z_1 is the observation

$$p(X, Z) = p(x_1, z_1) = p(z_1|x_1)p(x_1)$$

Toy problem: Dynamics and Measurement

 x_1, x_2 is the state of the robot z_1 is the observation

$$p(X, Z) = p(x_1, x_2, z_1) = p(x_2, z_1 | x_1) P(x_1)$$

= $p(x_2 | x_1) p(z_1 | x_1) p(x_1)$

Toy problem: Including landmarks

 x_1, x_2 is the state of the robot z_1 is the observation

$p(X, Z) = p(x_1, l_1, z_1) = p(z_1|x_1, l_1)p(x_1)p(l_1)$

Toy problem:

 x_1, x_2, x_3 are the states of the robot z_1 is the observation l_1 is the landmark

Similarly we get

$$p(X, Z) = p(x_1, x_2, x_3, l_1, l_2, z_1, z_2, z_3, z_4)$$

$$p(X, Z) = p(x_1)p(x_2|x_1)p(x_3|x_2)$$

$$\times p(l_1)p(l_2)$$

$$\times p(z_1|x_1)$$

$$\times p(z_2|x_1, l_1)p(z_3|x_2, l_1)p(z_4|x_3, l_2).$$

Circles: Random variables Square: Measurements

Gaussian Assumption

We will make an assumption that each of the probabilities are gaussians.

$$p(X, Z) = p(x_1)p(x_2|x_1)p(x_3|x_2)$$

× $p(l_1)p(l_2)$
× $p(z_1|x_1)$
× $p(z_2|x_1, l_1)p(z_3|x_2, l_1)p(z_4|x_3, l_2)$

Maximum a Posteriori Inference

Maximum a Posteriori Inference

Maximum a Posteriori Inference

Remember that we had done this:

p

$$\begin{aligned} (X,Z) &= p(x_1)p(x_2|x_1)p(x_3|x_2) \\ &\times p(l_1)p(l_2) \\ &\times p(z_1|x_1) \\ &\times p(z_2|x_1,l_1)p(z_3|x_2,l_1)p(z_4|x_3,l_2). \end{aligned}$$

$$X^{MAP} = \underset{X}{argmax}$$

 $\begin{pmatrix} p(x_1)p(x_2|x_1)p(x_3|x_2) \\ \times p(l_1)p(l_2) \\ \times p(z_1|x_1) \\ \times p(z_2|x_1, l_1)p(z_3|x_2, l_1)p(z_4|x_3, l_2). \end{pmatrix}$

Introducing factor graphs

 $= p(x_1)p(x_2|x_1)p(x_3|x_2)$ $\times p(l_1)p(l_2)$ $\times p(z_1|x_1)$ $\times p(z_2|x_1, l_1)p(z_3|x_2, l_1)p(z_4|x_3, l_2).$ • Each of the probability can be represented as a factor

Introducing factor graphs

$$X^{MAP} = \operatorname{argmax}_{X} \phi(X)$$
$$= \operatorname{argmax}_{X} \prod_{i} \phi_i(X_i)$$

Expanding the factors

$$\phi(x,l) = p(z|x,l) = \mathcal{N}(z;h(x,l),R) = \frac{1}{\sqrt{|2\pi R|}} \exp\left\{-\frac{1}{2} \|h(x,l) - z\|_R^2\right\}$$

• Remember the Gaussian Assumption:

$$\mathcal{N}(\theta;\mu,\Sigma) = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left\{-\frac{1}{2} \|\theta - \mu\|_{\Sigma}^{2}\right\},\,$$

where $\mu \in \mathbb{R}^n$ is the mean, Σ is an $n \times n$ covariance matrix, and

$$\|\theta - \mu\|_{\Sigma}^{2} \stackrel{\Delta}{=} (\theta - \mu)^{\top} \Sigma^{-1} (\theta - \mu)^{\top}$$

Expanding the factors

$$\phi(x_{t+1}, x_t) = p(x_{t+1} | x_t, u_t) = \frac{1}{\sqrt{|2\pi Q|}} \exp\left\{-\frac{1}{2} \|g(x_t, u_t) - x_{t+1}\|_Q^2\right\}$$

• Remember the Gaussian Assumption:

$$\mathcal{N}(\theta;\mu,\Sigma) = \frac{1}{\sqrt{|2\pi\Sigma|}} \exp\left\{-\frac{1}{2} \|\theta - \mu\|_{\Sigma}^{2}\right\},\,$$

where $\mu \in \mathbb{R}^n$ is the mean, Σ is an $n \times n$ covariance matrix, and

$$\|\theta - \mu\|_{\Sigma}^{2} \stackrel{\Delta}{=} (\theta - \mu)^{\top} \Sigma^{-1} (\theta - \mu)^{\top}$$

Expanding the factors

$$X^{MAP} = \underset{X}{\operatorname{argmax}} \prod_{i} \phi_{i}(X_{i})$$

$$= \underset{X}{\operatorname{argmax}} \left(\frac{1}{\sqrt{2\pi R}} \exp\left\{-\frac{1}{2}||h(x_{1}, l_{1}) - z_{2}||\right\} \right)$$

$$\frac{1}{\sqrt{2\pi R}} \exp\left\{-\frac{1}{2}||h(x_{2}, l_{1}) - z_{3}||\right\} \frac{1}{\sqrt{2\pi R}} \exp\left\{-\frac{1}{2}||h(x_{3}, l_{2}) - z_{4}||\right\}$$

$$\frac{1}{\sqrt{2\pi R}} \exp\left\{-\frac{1}{2}||g(x_{1}, u_{1}) - x_{2}||\right\} \frac{1}{\sqrt{2\pi R}} \exp\left\{-\frac{1}{2}||g(x_{2}, u_{2}) - x_{3}||\right\}$$

$$\frac{1}{\sqrt{2\pi R}} \exp\left\{-\frac{1}{2}||f_{1}(x_{1}) - x_{1}||\right\} \frac{1}{\sqrt{2\pi R}} \exp\left\{-\frac{1}{2}||f_{2}(x_{1}) - x_{1}||\right\}$$

$$\frac{1}{\sqrt{2\pi R}} \exp\left\{-\frac{1}{2}||o(l_{1}) - l_{1}||\right\} \frac{1}{\sqrt{2\pi R}} \exp\left\{-\frac{1}{2}||o(l_{2}) - l_{2}||\right\}$$

MAP

So, each of the factors can be represented as:

$$\phi_i(X_i) \propto \exp\left\{-\frac{1}{2} \|h_i(X_i) - z_i\|_{\Sigma_i}^2\right\},\,$$

Can be rewritten as follows:

$$X^{MAP} = \underset{X}{\operatorname{argmin}} \sum_{i} \|h_i(X_i) - z_i\|_{\Sigma_i}^2.$$

We know that:

$$X^{MAP} = \operatorname*{argmax}_{X} \phi(X)$$
$$= \operatorname*{argmax}_{X} \prod_{i} \phi_{i}(X_{i})$$

Linearization

using a simple Taylor expansion, we get:

$$h_i(X_i) = h_i(X_i^0 + \Delta_i) \approx h_i(X_i^0) + H_i\Delta_i,$$

• H is the measurement Jacobian, which is written as:

$$H_i \stackrel{\Delta}{=} \frac{\partial h_i(X_i)}{\partial X_i}\Big|_{X_i^0},$$

• Δ is the state update vector, which is written as:

$$\Delta_i \stackrel{\Delta}{=} X_i - X_i^0$$

Linearization

12

61

Rewrite the Mahalanobis norm as follows:

$$\|e\|_{\Sigma}^{2} \stackrel{\Delta}{=} e^{\top} \Sigma^{-1} e = \left(\Sigma^{-1/2} e\right)^{\top} \left(\Sigma^{-1/2} e\right) = \left\|\Sigma^{-1/2} e\right\|_{2}^{2}.$$

$$\Delta^* = \underset{\Delta}{argmin} \sum_{i} ||\Sigma_i^{1/2} H_i \Delta_i - \Sigma_i^{1/2} \{ z_i - h_i(X_i^0) \} ||_2^2$$

Converting to Least Squares

Let:

$$A_{i} = \Sigma_{i}^{-1/2} H_{i}$$

$$b_{i} = \Sigma_{i}^{-1/2} \left(z_{i} - h_{i}(X_{i}^{0}) \right).$$

We finally arrive at the form:

$$\Delta^* = \underset{\Delta}{\operatorname{argmin}} \sum_{i} \|A_i \Delta_i - b_i\|_2^2$$
$$= \underset{\Delta}{\operatorname{argmin}} \|A\Delta - b\|_2^2,$$

Solving the Least Squares

$$\Delta^* = \underset{\Delta}{\operatorname{argmin}} \sum_i \|A_i \Delta_i - b_i\|_2^2$$

=
$$\underset{\Delta}{\operatorname{argmin}} \|A\Delta - b\|_2^2,$$

$$\||A\Delta - b||_2^2 = (A\Delta - b)^T (A\Delta - b)$$

$$\||A\Delta - b||_2^2 = \Delta^T A^T A \Delta - 2\Delta^T A^T b + b^t b$$

In order to minimize the error we do:

The Measurement jacobian

- Each factor represent a constraint between two variables.
- Therefore, the measurement Jacobian is a sparse matrix
- As A is sparse the A^TA is also sparse
- We can use sparse methods which are fast

Information matrix A^TA

Matrix A

Methods for solving the least-squares problem

 $A^T A \Delta = A^T b$

Calculating $(A^TA)^{-1}$ is a bad idea -> $O(n^3)$

 $R^T R \Delta = A^T b$

Use the Cholesky decomposition $A^T A = R^T R$

For sparse matrices - O(m^{1.5}) to O(m²)

• Finally use the forward substitution and backward substitution to solve

Graph SLAM Summary

- Full SLAM technique
- Graph SLAM leads to sparse matrices
- Suited for Large scale SLAM.
- Batch optimization of multiple sensor measurements.

SLAM Least-Squares Example

Localize robot and door based on 1D range measurements

Measurements: distance to the door, signed

Borrowed from Prof. Michael Keass

Least Square Example

We know that:

$$\begin{split} \theta^* &= \arg\min_{\theta} \sum ||h_i(\theta) - z_i||_{\Sigma_i}^2 \\ &= \arg\min_{\theta} (||h_p(x_0) - p||_{\Sigma_p}^2 + \\ &||h_u(x_0, x_1) - u_1||_{\Sigma_u}^2 + ||h_u(x_1, x_2) - u_2||_{\Sigma_u}^2 + \\ &||h_d(x_0, l) - d_0||_{\Sigma_d}^2 + ||h_d(x_1, l) - d_1||_{\Sigma_d}^2 + ||h_d(x_2, l) - d_2||_{\Sigma_d}^2 \end{split}$$

 u_1

 (χ_1)

 $\bullet d_1$

 $\langle x_0 \rangle$

 d_0

р

 u_2

 (x_2)

 d_2

Least Square Example

Solve the following least squares problem

SLAM Least-Squares Example

Localize robot and door based on 1D range measurements

Matrix A: Each row corresponds to a factor Each column to a variable A is sparse!

Sparse Factorization Example

 \approx 11/column

Graph-based SLAM - Intel, 2011

Modern SLAM

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I. and Leonard, J.J., 2016. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on robotics, 32(6), pp.1309-1332.

A typical SLAM system...

Visual Inertial SLAM - Options

Front End

RGB Cameras: Direct methods Indirect methods

Feature Tracking: KLT tracker

IMU: IMU preintegration

Loop Closures

 Back End
Smoothing and Mapping
Filtering

Visual Inertial SLAM - Front end

• Extracts relevant features from the sensor data.

Front end - Direct vs Indirect methods

Indirect Methods	Direct Methods			
 Feature-based approaches are quite mature, with a long history of success System depends on the availability of features in the environment, the reliance on detection and matching thresholds. E.g ORB-SLAM 	 System works with the raw pixel information and dense-direct methods exploit all the information in the image. Can outperform feature-based methods in scenes with poor texture, defocus, and motion blur. Require high computing power (GPUs) for real-time performance. E.g. DSO-SLAM 			

Hybrid Methods: SVO

- The algorithm uses sparse model-based image alignment for motion estimation
- The algorithm uses point-features for BA

Direct vs Indirect methods

https://youtu.be/C6-xwSOOdqQ

Back-end and comparisons

Smoothing and Mapping	Filtering				
 Enables an insightful visualization of the problem. Factor graphs can model complex inference problems The connectivity of the factor graph in turn influences the sparsity of the resulting SLAM problem 	 Proven to be less accurate and efficient compared to smoothing methods Some of the SLAM systems based on EKF have also been demonstrated to attain state-of-the-art performance. E.g. Multistate Constraint Kalman Filter. 				

Backend examples...

Comparison of Monocular Visual-Inertial Odometry

J. Delmerico and D. Scaramuzza, "A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots," 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 2018, pp. 2502-2509, doi: 10.1109/ICRA.2018.8460664.

Algorithms being compared

- MSCKF: An Extended Kalman Filter (EKF)-based algorithm for real-time vision-aided inertial navigation [2007].
- Open Keyframe-based Visual-Inertial SLAM (OKVIS) utilizes non-linear optimization on a sliding window of keyframe poses.
- ROVIO: Visual-Inertial state estimator based on an extended Kalman Filter (EKF), which proposed several novelties.
- VINS-Mono: A nonlinear-optimization-based sliding window estimator using pre-integrated IMU factors.
- SVO+GTSAM: SVO in front end paired with a full-smoothing backend performing online factor graph optimization using iSAM2.

Comparison of Translation Error

Comparison of Yaw Errors

Algorithm Efficiency

Deep Learning for SLAM

TartanVO

	Seq.	MH-04	MH-05	VR1-02	VR1-03	VR2-02	VR2-03
Geometry-based *	SVO [46]	1.36	0.51	0.47	Х	0.47	Х
	ORB-SLAM [3]	0.20	0.19	х	х	0.07	х
	DSO [5]	0.25	0.11	0.11	0.93	0.13	1.16
	LSD-SLAM [2]	2.13	0.85	1.11	Х	х	Х
Learning-based †	TartanVO (ours)	0.74	0.68	0.45	0.64	0.67	1.04

* These results are from [46]. † Other learning-based methods [36] did not report numerical results.

TartanVO

