
Graph SLAM



Limitations of EKF-SLAM

● Time complexity - O(n2)
● Memory complexity - O(n2)

Large City Navigation Scenario (3.3 
kilometers) from the DARPA
ASPN project

So this becomes difficult for EKF SLAM:



Graph SLAM Representation

● Let’s say that we have a robot moving through space 

● Each of the states can be represented as a variable node in a graph.
● The action can be represented as the a constraint denoted by an edge.

x0 x1 x2



Factor Graph Representation

● Each of the landmarks can be represented as a node in a graph.
● The measurement can be represented as the a constraint denoted by an edge.

x0 x1 x2
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Factor Graph Intuition

● Think of each of the constraints as springs
● The stiffness of the string will be the uncertainty.
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Victoria park dataset 

● iSAM paper which uses factor graphs 
solves the complete problem including 
data association problem in 7.7 mins, the 
sequence is 26 min long

● 3.3 times faster than real-time on a 
laptop computer

Nebot Et Al



Toy Problem: Bayesian network
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SLAM is basically figuring out the state given the 
measurements

State: Robot location - x1, x2, x3, l1, l2
Measurement: z1, z2, z3, z4 

So what we want is:

To get that we want: 



Toy problem: Introducing dynamics

x1x1, x2 is the state of the robot

There are no observation

x2



Toy problem: Introducing Measurement

x1

z1

x1 is the state of the robot

z1 is the observation



Toy problem: Dynamics and Measurement

x1

z1

x1, x2 is the state of the robot
z1 is the observation

x2



Toy problem: Including landmarks

x1, x2 is the state of the robot
z1 is the observation

x1

l1

z1



Toy problem:

x1 x2 x3

l1 l2

z3 z4

z1

z2
x1, x2, x3 are the states of the robot
zi is the observation
li  is the landmark

Similarly we get

Circles: Random variables
Square: Measurements



Gaussian Assumption

We will make an assumption that each of the probabilities are gaussians. 



Maximum a Posteriori Inference

For SLAM we want:

We want this



Maximum a Posteriori Inference

We know that:

Therefore:



Maximum a Posteriori Inference

Remember that we had done this:



Introducing factor graphs
● Each of the probability can be 

represented as a factor



Introducing factor graphs



Expanding the factors

● Remember the Gaussian Assumption:



Expanding the factors

● Remember the Gaussian Assumption:



Expanding the factors



MAP

So, each of the factors can be represented as:

We know that:
Can be rewritten as follows:



Linearization

using a simple Taylor expansion, we get:

● H is the measurement Jacobian, which is written as:

● ∆ is the state update vector, which is written as:



Linearization

● Rewrite the Mahalanobis norm as follows: 



Converting to Least Squares

Let:

We finally arrive at the form:



Solving the Least Squares

In order to minimize the error we do:



The Measurement jacobian

● Each factor represent a constraint between two 
variables.

● Therefore, the measurement Jacobian is a sparse 
matrix

● As A is sparse the ATA is also sparse
● We can use sparse methods 

which are fast

Information matrix ATA Matrix A



Methods for solving the least-squares problem

Calculating (ATA)-1 is a bad idea -> 
O(n3)

Use the Cholesky decomposition
● For sparse matrices - O(m1.5) to O(m2)

● Finally use the forward substitution and 
backward substitution to solve



Graph SLAM Summary

● Full SLAM technique

● Graph SLAM leads to sparse matrices

● Suited for Large scale SLAM.

● Batch optimization of multiple sensor measurements.



Borrowed from Prof. Michael Keass



Least Square Example

We know that:



Least Square Example



Least Square Example

● Solve the following least squares problem



Borrowed from Prof. Michael Keass



Borrowed from Prof. Michael Keass



Graph-based SLAM - Intel, 2011

http://www.youtube.com/watch?v=E6IvbjZA7Ao


Modern SLAM
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I. and Leonard, 

J.J., 2016. Past, present, and future of simultaneous localization and mapping: Toward the 
robust-perception age. IEEE Transactions on robotics, 32(6), pp.1309-1332.



A typical SLAM system…



RGB Cameras:
Direct methods
Indirect methods

Feature Tracking:
KLT tracker

IMU:
IMU preintegration

Loop Closures

Visual Inertial SLAM - Options

Smoothing and 
Mapping

Filtering

Front End
Back End



Visual Inertial SLAM - Front end

● Extracts relevant features from the sensor data.



Front end - Direct vs Indirect methods

Indirect Methods Direct Methods

● Feature-based approaches are quite mature, 
with a long history of success

● System depends on the availability of features 
in the environment, the reliance on detection 
and matching thresholds.

● E.g ORB-SLAM

● System works with the raw pixel information 
and dense-direct methods exploit all the 
information in the image.

● Can outperform feature-based methods in 
scenes with poor texture, defocus, and motion 
blur.

● Require high computing power (GPUs) for 
real-time performance.

● E.g. DSO-SLAM

Hybrid Methods: SVO
● The algorithm uses sparse model-based image alignment for motion estimation
● The algorithm uses point-features for BA



https://youtu.be/C6-xwSOOdqQ

Direct vs Indirect methods

https://docs.google.com/file/d/1mZVALxDGdDHt7YHrkPaHlTywc-xWWWwN/preview


Back-end and comparisons

Smoothing and Mapping Filtering

● Enables an insightful visualization of the 
problem.

● Factor graphs can model complex inference 
problems

● The connectivity of the factor graph in turn 
influences the sparsity of the resulting SLAM 
problem

● Proven to be less accurate and efficient 
compared to smoothing methods

● Some of the SLAM systems based on EKF 
have also been demonstrated to attain 
state-of-the-art performance.
E.g. Multistate Constraint Kalman Filter.



Backend examples…



Comparison of Monocular 
Visual-Inertial Odometry

J. Delmerico and D. Scaramuzza, "A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots," 2018 IEEE 
International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 2018, pp. 2502-2509, doi: 10.1109/ICRA.2018.8460664.



Algorithms being compared

● MSCKF:  An Extended Kalman Filter (EKF)-based algorithm for real-time 
vision-aided inertial navigation [2007].

● Open Keyframe-based Visual-Inertial SLAM (OKVIS) utilizes non-linear 
optimization on a sliding window of keyframe poses.

● ROVIO:  Visual-Inertial state estimator based on an extended Kalman Filter 
(EKF), which proposed several novelties.

● VINS-Mono:  A nonlinear-optimization-based sliding window estimator using 
pre-integrated IMU factors.

● SVO+GTSAM: SVO in front end paired with a full-smoothing backend 
performing online factor graph optimization using iSAM2.



Comparison of Translation Error



Comparison of Yaw Errors



Algorithm Efficiency

RMSE errorRMSE error



Deep Learning for SLAM



TartanVO



TartanVO

http://www.youtube.com/watch?v=NQ1UEh3thbU&t=115

