Graph SLAM



Limitations of EKF-SLAM

e Time complexity - O(n2)
e Memory complexity - O(n2)

So this becomes difficult for EKF SLAM:

Large City Navigation Scenario (3.3
kilometers) from the DARPA
ASPN project



Graph SLAM Representation

e Let's say that we have a robot moving through space

e Each of the states can be represented as a variable node in a graph.
e The action can be represented as the a constraint denoted by an edge.



Factor Graph Representation

\ X,

e Each of the landmarks can be represented as a node in a graph.
e The measurement can be represented as the a constraint denoted by an edge.



Factor Graph Intuition

e Think of each of the constraints as springs
e The stiffness of the string will be the uncertainty.



Victoria park dataset

: i
:
. [
. LA i
-
. . e v
. . N i)
+ B N
* - .
. . \
.. (W N
. | . . - %
. r
. . ) . n
* "
. . e
.

e iSAM paper which uses factor graphs
solves the complete problem including
data association problem in 7.7 mins, the
sequence is 26 min long

e 3.3 times faster than real-time on a
laptop computer



Toy Problem: Bayesian network

State: Robot location-x_, =, x , 1 1

37 1’ 2
Measurement:zl, Z,r Z z

37 4

SLAM is basically figuring out the state given the
measurements

So what we want is: |

p(X|Z

. .

p(X.Z
])(X‘Z) — 1;(2)) To get that we want:

p(X, Z)




Toy problem: Introducing dynamics

X,, X, is the state of the robot

There are no observation

p(X, Z) = p(x1, x2) = p(z2|z1)p(21)



Toy problem: Introducing Measurement

X, is the state of the robot

Z, is the observation

p(X, Z) = p(x1, 21) = p(x1|71)p(21)




Toy problem: Dynamics and Measurement

Xgs X, is the state of the robot
Z, is the observation

24

p(X, Z) = p(ay,x9,21) = p(xg, z1|x1)P(x1)
= p(ao|xy)p(z1|21)p(x])



Toy problem: Including landmarks /@
Z
Xgs X, is the state of the robot
Z, is the observation

p(X,Z) =plz1, 11, z21) = p(z1|x1, )p(xr)p(lh)




Toy problem: 1, @

X5 X,y XgAre the states of the robot
r4 is the observation
Ii is the landmark

Similarly we get

p(X7 Z) — (xla X, I3, l17 l27 1y 225 %3, Z4)
z
p(X, Z) = p(z1)p(w2|z1)p(z3|T2) 1
Circles: Random variables
x p(l1)p(l2) Square: Measurements
X p(21]z1)
X p(z2|x1,l1)p(23|Te, l1)p(24] 23, l2).



Gaussian Assumption

We will make an assumption that each of the probabilities are gaussians.

p(X, Z) = p(x1)p(x2|x1)p(23]|22)
aish p(Z) i X P [1)})(12)
o X p(z1]z1)
R X p(2za|z1,l1)p(23|22, l1)p(24| 23, I2).
00s | p (LL )




Maximum a Posteriori Inference

For SLAM we want:  p( X |Z)

We want this

Q=

Qz

Qs

(o8 5

QoS |-




Maximum a Posteriori Inference

Y MAP

We know that:
p(X|2)

Therefore;

X

= argmax p(X|Z)

X

_ p(X.2)
~ P2

Q=

Qz -
Qis
(o8 J 5

005 |-

XMAP — grgmax (p(X, Z)) |




Maximum a Posteriori Inference

Remember that we had done this:

1)
X\[Ap — argmaz X P(ll)p(lQ)
v x plz1|71)

><p(z2|:1:1 11) (73|12 11) (Z4|1f; lQ)



_ e Each of the probability can be
|ntrOdUC|ng faCtor graphs represented as a factor

= ¢1(x1)d2 (2, 71)P3(73, T2)
X ¢4(l1)¢s(l2)
X ¢g(x1)
X ¢7(x1, ) ps(22, 1) Po(23, l2),




Introducing factor graphs

X]WAP

argmax ¢(X)
X

= argmax ] [ ¢i(X))




Expanding the factors

qﬁ(gj, l) — p<z|gj7 l) — N(z;h(z,l),R) = |217rR| exp {—% |h(x, 1) — z||f?}

e Remember the Gaussian Assumption:

1 1 :
N (B, %) = exp {~ 10— ull3}.

V27X

where p € R™ is the mean, . is an n X n covariance matrix, and

A -
16— plls=0—p)' =710 - p




Expanding the factors

O(Tii1, 2t) = p(Tei1| e, up) =

1 1
exp { =3 lg(ars ue) - v

V[27Q)| 2
e Remember the Gaussian Assumption:
1 1 :
NG u, X)) = ex {—— 0 — 2}.
(6; 1, ) s P 72 10— plls ¢ s

where p € R™ is the mean, . is an n X n covariance matrix, and

A -
16— plls=0—p)' =710 - p



Expanding the factors
XMAP = argmax H ¢; (X

— aramax exp h,rlll ) — 29| ‘
gX(If{H }

X

‘ \/ﬁexl) {=3llh(za, 1) — Z3||}H\/ﬁexl) {=3llh(ws, 1) = 2|} ‘

1
g OXP

-

Ylg(wy,ur) — o[} 7=z exp {—

||9 T9,Uz) — T3

H

1

5= CXP
1

oo OXP

{_.

-

l||f1(

3llo(l

) — x|}

— 4|}

vézﬁexp{
exp{

—3|[ fo(z1) — 1|}

Hlo(l) — bs]|}




MAP

So, each of the factors can be represented as:

.. 1 5 .
@i (X;) o< exp D) [hi(Xi) — zil Mo
We know that:
Can be rewritten as follows:
| XMAP - —  argmax ¢(X)
xXMAP _ argminz |hi (X5) — 2| % : X
X - l
L = argmax ][ ¢:(X3)
)




Linearization

using a simple Taylor expansion, we get:

h.-j(Xi) = h.i(X.,;O -+ A,) ~ h,(X,O) -+ HjAj,

e H is the measurement Jacobian, which is written as:

()X, X0

e Ais the state update vector, which is written as:

A; & X X0




Linearization

2

AT = argminz hi( X)) + H;A; — 2 5

A5 i

2 [} T & ‘) @
= argminz H,A; — {Z-,; = h-i(X.?)}HE_ ; &
S i o

e
€

e Rewrite the Mahalanobis norm as follows:

||‘°||2L S eTole= (2_1/26)T (2_1/2@) = HZ_I/QeHz.

A* = argminy| | HiA =5, {2 — hi(XD)} |3
A ?



Converting to Least Squares

Let:

A, = 7VH,

t

bi = zf” . (4 -~ h.,-(X.?)) .

(]

We finally arrive at the form:
N = a.rgminz | A A; — b,-Hg
a i

= argmin ||AA — b||§,



Solving the Least Squares

A* = argmin Z |A;A; — b.,;||§
Ay

= argmin ||[AA — b||§, o \I/ *—{ % )—o
A

|AA = b]|3 = (AA = )" (AA = b)

|AA —b||5 = ATATAA —2ATATH 4+ b'b

In order to minimize the error we do:

8“/4&?3— ol _ > ATAA = ATh




1126333 A, nnz=5681

The Measurement jacobian

e Each factor represent a constraint between two
variables.

e Therefore, the measurement Jacobian is a sparse
matrix

e AsAis sparse the ATAis also sparse

e We can use sparse methods
which are fast

Information matrix ATA Matrix A



Methods for solving the least-squares problem

Calculating (ATA)" is a bad idea ->
O(n®)

RTRA = ATb Use the Cholesky decomposition A’ A = RTR
e For sparse matrices - O(m'°) to O(m?)

Bu = H QH = M e Finally use the forward substitution and
backward substitution to solve

Ry Ab R X vy



Graph SLAM Summary

e Full SLAM technique
e Graph SLAM leads to sparse matrices
e Suited for Large scale SLAM.

e Batch optimization of multiple sensor measurements.



SLAM Least-Squares Example

Localize robot and door based on 1D range measurements

t =0 t=1 door t=2
d0:2m dl—lm dz—

robot @ B @ R

Borrowed from Prof. Michael Keass



Least Square Example

We know that:

0" = argmin hi(0) — z||%
96 ZH (0) ||2,

= argmin(||h,(zo) — p| |22,, T
0

1o, 1) — ulH%u + | [hu(z1, 22) — UQH%U_'_

|ha(@o, 1) — dol[3;, + [|ha(@1, 1) — dul[$, +||ha(z2, 1) — do[5;,)



Least Square Example

ho(xe, ) =2 — 20 0, =0.1Im

ha(x,l)=1—=x oq = 0.0lm
hy(x) =2 o, =0.1m dy=2m dy=1m d; =
robot @ @ @
, ‘ 2
Hh(l’o /El)_UIHZ o |‘llg(llﬂ_%‘|% u, =1m U, =2m

= || — 10z + 10x1 — 10|[3



Least Square Example

10
—10
0
—100
0
0

0
10
—10
0
—100
0

0 0
0 0
0 0
0 100
0 100
—100 100

Solve the following least squares problem

200
100

100




SLAM Least-Squares Example

Localize robot and door based on 1D range measurements

Xo X1 Xy 1
Matrix A: 2
Each row corresponds to a factor U1
Each column to a variable U2
A is sparse! do
d
d;

Borrowed from Prof. Michael Keass



[Kaess et al., TRO 08]

Sparse Factorization Example

Example from real sequence:
Square root inf. matrix )
Side length: 21000 variables / 2
Dense: 1.7GB, sparse: 1MB :

233499 non-zeros
~ 0.1% density
~ 11/column

Borrowed from Prof. Michael Keass



Graph-based SLAM - Intel, 2011



http://www.youtube.com/watch?v=E6IvbjZA7Ao

Modern SLAM

Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, |. and Leonard,
J.J., 2016. Past, present, and future of simultaneous localization and mapping: Toward the
robust-perception age. IEEE Transactions on robotics, 32(6), pp.1309-1332.



A typical SLAM system...

SLAM
estimate

front-end back-end

X i
. data association: * )
§-short-term (feature tracking) : 1?
. - long-term (loop closure) e B PR

ol
e
o




Visual Inertial SLAM - Options

Front End
Back End
e N
RGB Cameras:
Direct methods
Indirect methods
S < Smoothing and
e .
Mappin
Feature Tracking: Pping
KLT tracker
\_ J
4 ] N\
IMU: . ) Filtering
L IMU preintegration )
Loop Closures




Visual Inertial SLAM - Front end

e Extracts relevant features from the sensor data.




Front end - Direct vs Indirect methods

Indirect Methods Direct Methods
e Feature-based approaches are quite mature, e System works with the raw pixel information
with a long history of success and dense-direct methods exploit all the
e System depends on the availability of features information in the image.
in the environment, the reliance on detection e Can outperform feature-based methods in
and matching thresholds. scenes with poor texture, defocus, and motion
e E.gORB-SLAM blur.

e Require high computing power (GPUs) for
real-time performance.
e E.g. DSO-SLAM

Hybrid Methods: SVO
e The algorithm uses sparse model-based image alignment for motion estimation
e The algorithm uses point-features for BA



Direct vs Indirect methods

https://youtu.be/C6-xwSOOdqQ


https://docs.google.com/file/d/1mZVALxDGdDHt7YHrkPaHlTywc-xWWWwN/preview

Back-end and comparisons

Smoothing and Mapping

e Enables an insightful visualization of the
problem.

e Factor graphs can model complex inference
problems

e The connectivity of the factor graph in turn
influences the sparsity of the resulting SLAM
problem

Filtering

Proven to be less accurate and efficient
compared to smoothing methods

Some of the SLAM systems based on EKF
have also been demonstrated to attain
state-of-the-art performance.

E.g. Multistate Constraint Kalman Filter.



Backend examples...




Comparison of Monocular
Visual-Inertial Odometry

J. Delmerico and D. Scaramuzza, "A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots," 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 2018, pp. 2502-2509, doi: 10.1109/ICRA.2018.8460664.



Algorithms being compared

e MSCKF: An Extended Kalman Filter (EKF)-based algorithm for real-time
vision-aided inertial navigation [2007].

e Open Keyframe-based Visual-Inertial SLAM (OKVIS) utilizes non-linear
optimization on a sliding window of keyframe poses.

e ROVIO: Visual-Inertial state estimator based on an extended Kalman Filter
(EKF), which proposed several novelties.

e VINS-Mono: A nonlinear-optimization-based sliding window estimator using
pre-integrated IMU factors.

e SVO+GTSAM: SVO in front end paired with a full-smoothing backend
performing online factor graph optimization using iISAM2.



Comparison of Translation Error

I— svomsf msckf —— okvis — rovio — vinsmono —— vinsmonolc — svogtsam
= 16 T T = 16 T |Intel ll\IUC T T

S 14 1 H 14} 8
e 1.2 1 = 12} 1
£ 1.8 {4 2 10} 1
508 1 & osf | | d
06 - 1 4 06GF | : !
5 09 1 2 0of Wik W el Ty [t
H 0.0 ' £ g0/ R .

70 140 21.0 28.0 35.0 70 140 21.0 28.0 35.0
Distance traveled [m] Distance traveled [m]

16 | | Up Bloard | | 16 | | ODR{OID | |

H 141 1 B2 14} 1
o 1.2} 1 = 12} .
2 10F {1 2 10} 1
s 0.8} | : 1 @ 08} ' 8
it g 0 2O b
2 05l | 1 2 03f 1 [H1 ]
Bl L Lo [0 11 T ) 2 a0 Vs T 14 s T

70 140 21.0 28.0 350 14.0 21. 0 28.0 35.0

Distance traveled [m] Distance traveled [m]



Comparison of Yaw Errors

I— svomsf - msckf — okvis — rovio — vinsmono — vinsmonolc — svogtsam
" Laptop " Intel NUC
’ED‘ 5 i 1 1 I 1 I I 'go‘ 5 I 1 1 1 I 1 |
. o
Tt 1 T4t :
= IR ]
S 2l l @9l i
0 I L 0 1 1
7.0 14.0 21 0 28.0 350 7.0 14.0 21 0 28.0 350
Distance traveled [m] Distance traveled [m]
2 Up Board 5 ODROID
'go‘ 5 | 1 1 I 1 I i ’E.O‘ 5 i 1 I 1 I 1 |
= =, '
- 4t i — 4+ T
g 3t - g 3t .
8 9l 1l @9l il
MY | 2 s 0ihy T
>" 0 o =) >" 0 é é ! ‘ | |
0 14.0 21.0 28.0 35.0 7.0 14.0 21.0 280 35.0

Distance traveled [m] Distance traveled [m]



Algorithm Efficiency

vinsmono

vinsmonole

O Laptop

[] Intel NUC
/\ Up Board
<> ODROID

—  gvomsf
msckf
~ okvis — gvogtsam
— NOVIO
250 = T l<> T T T T T T
S ool &°
< @
a0
= 150F ,ea
= o
o
a:i 100 m o =] o O
O 90F o]
| Dl ]

RMSE error

0 L l ] ] ]
0.0 01 02 03 04 05 06 0.7 0.8 0.9

ge %

o

Memory Usa,

50_ I‘ T T T T T T T =
wp° ]
A
30 L i .
20 o & <>_
. o 4
10 “unms @) D

O 1 ] ] ] ] ] ] ]
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
RMSE error



Deep Learning for SLAM



TartanVO

Intrinsics layers K¢

ol g
Y |

Matching network Optical flow F}*!
Mo(Iy, Ip41)

Translation Head

oo — T
Ooo — R

Rotation Head
Pose network Py (F/t!, K)

Seq. MH-04 MH-05 VRI1-02 VRI-03 VR2-02 VR2-03
SVO [46] 1.36 0.51 0.47 X 0.47 X
Geometrybasell ORB-SLAM [3] 0.20 0.19 X X 0.07 X
DSO [5] 0.25 0.11 0.11 0.93 0.13 1.16
LSD-SLAM [2] 2:13 0.85 1.11 X X X
Learning-based f Tartan VO (ours) 0.74 0.68 0.45 0.64 0.67 1.04

* These results are from [46]. § Other learning-based methods [36] did not report numerical results.



TartanVO

EuRoC Vicon-Room-1+03 ORB-SLAM-Mono

Tracking Lost

[
o~
y

however, geometry-based VO methads are not robust encugh in dMcult cases



http://www.youtube.com/watch?v=NQ1UEh3thbU&t=115

